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Appendix SI: Magnetic resonance imaging protocols 

Brain MRI scans may induce geometric and intensity variabilities that adversely impact on automated 

measurements of lesion and brain volume change. To remedy this impact, we implemented the 

Magnetic Resonance Imaging in MS (MAGNIMS) guidelines (1). All brain MRI scans were acquired 

on the same 3T Philips Achieva scanner at the University of Ljubljana, Faculty of Medicine, 
Infrastructural centre of MR imaging and spectroscopy. The imaging protocol was the same for all study 

participants, and included: (i) T1-weighted images, (ii) T1-weighted images with gadolinium (Gd) 

enhancement, (iii) T2-weighted images, (iv) fluid-attenuated inversion recovery (FLAIR) images, and (v) 

dual inversion recovery (DIR) images. Vendor-provided geometric distortion correction using phantom-

based calibration was applied. Furthermore, at the expense of extended acquisition time, averaging with a 

factor of 2 was employed to each scan so as to boost image quality. All sequences were high-resolution 

3D, acquired in the sagittal direction. The sequences and corresponding parameters are listed in Table SI. 

Table SI. List of acquired magnetic resonance (MR) sequences and corresponding parameters: echo 

time (TE), repetition time (TR), inversion time (TI) and flip angle (FA). All sequences were acquired 

in the sagittal direction 

T1: T1-weighted sequence; T2: T2-weighted sequence; FLAIR: Fluid Attenuated Inversion Recovery; 

DIR: Double Inversion Recovery; Gd: gadolinium. 

SEQUENCE SAMPLING [pix] SPACING [mm] TE [ms] TR [ms] TI [ms] FA [°] 

T1 352×165×352 0.66×1.00×0.66 4.3 9.2 - 8
T1+Gd 352×165×352 0.66×1.00×0.66 4.3 9.2 - 8
T2 352×165×352 0.66×1.00×0.66 332 2500 - 90
FLAIR 240×321×240 0.97×0.64×0.97 276 4800 1650 90
DIR 256×256×300 0.97×0.64×0.97 249 5500 2550 90
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Appendix SII: Image analysis 

All MRI scans were quantified using MS Markers (UL FE, Tržaška 25, 1000 Ljubljana, Slovenia), an 

online automated image analysis software service (2). MS Markers extracted the contours of several 

brain structures and active, T2 and cortical lesions.  

In MS Markers, all MRI scans were first pre-processed by applying non-local-means based image de-

noising (3) and the N4 bias correction (4). From the pre-processed T1-weighted (T1) image the brain 

mask was extracted by a multi-atlas label fusion segmentation method (5), which employed 50 

manually segmented T1 MRI brain images of age-matched healthy subjects. The atlases were aligned to 

the brain masked and pre-processed T1 by a non-linear B-spline registration method (6). Using the same 

registration method, the corresponding pre-processed Gd-enhanced T1, FLAIR, and DIR images were 

aligned to the pre-processed T1. Also, the T1 image from an MNI 2009c non-linear symmetrical brain 

atlas (7) was aligned to the pre-processed T1-weighted image so as to determine a volumetric 

normalization factor. 

On baseline MRI scans, an unsupervised method for brain tissue and hyper-intense white-matter (WM) 

or T2 lesion segmentation (8) was applied to the co-registered pairs of brain masked and pre-processed 

T1 and FLAIR images. Lesion-filling algorithm (9) was used to reconstruct normal-appearing tissue 

intensity on the pre-processed T1 image, and the tissue segmentation was re-run to obtain the final WM 

and GM segmentations. Using the multi-atlas label fusion segmentation method (5) and 

Neuromorphometrics brain atlases of 30 subjects (10) the following brain substructures were segmented 

in the lesion-filled T1 image: (i) lateral ventricles, (ii) thalamus, (iii) precentral gyrus, (iv) basal ganglia 

including the nucleus accumbens, pallidum, putamen and caudate nucleus, (v) the limbic lobe including 

the anterior, middle and posterior cingulate gyrus, and (vi) medial temporal lobe including amygdala, 

hippocampus and parahippocampus.  

The T2 lesion segmentations were obtained along with the tissue segmentation. Cortical lesions were 

segmented from pairs of co-registered and pre-processed T1 and DIR images that were input into a 

modified unsupervised segmentation method (8), as used for the WM lesion segmentation. Namely, the 

hyper-intense DIR outliers, which contain the cortical lesions, were constrained to the GM region. The 

co-registered, brain masked and pre-processed T1 and Gd-enhanced T1 images were intensity co-

normalized using differential bias correction method (11) and subtracted. From the subtraction images 

the Gd-enhancing lesions were segmented based on the intensity z-score threshold exceeding value of 

3.0, and constrained within the WM region. 

The pre-processed T1, Gd-enhanced T1, FLAIR and DIR follow-up MRI scans were aligned to 

corresponding baseline scans using affine registration method. To assess atrophy changes for structures 

segmented from pairs of baseline and follow-up T1 images, the B-spline registration was also 

performed in a 2-step sequence using 4- and 2-mm control grid spacing. Atrophy was computed from 

Jacobian determinant of the obtained B-spline deformation field by integrating the values across the 

segmentation of each structure of interest (12). To assess changes in Gd-enhancing, T2, and cortical 

lesions from Gd-enhanced T1, FLAIR and DIR images, respectively, the baseline and follow-up scans 

were intensity co-normalized (11) and subtracted. The lesion change segmentations were based on the 

intensity z-score threshold exceeding absolute value of 3.0, and constrained to the WM in case of Gd-

enhancing and T2 lesions, and to GM in case of cortical lesions (13).  
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Before extracting the brain structures' and lesion volumes and lesion counts all the segmentations 

obtained from MS Markers were revised by the neuroradiologist in a blinded manner and, if required, 

manually updated using interactive visualization and segmentation tools and protocols, as described in 

Lesjak et al. (14). The baseline and baseline-to-follow-up MR measurements were then extracted from 

the revised segmentations. By multiplying by the volumetric normalization factor and voxel sizes, the 

corresponding normalized volumes for the brain structures were computed. From the lesion and lesion 

change segmentations the corresponding lesion volumes and counts according to 18-connected object 

labelling were computed. 
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Appendix SIII: Cognitive testing 

Verbal learning and delayed memory were tested by CVLT-II. After each verbal presentation of the 

word list, participants had to repeat as many words as possible. The total number of words recalled after 

the fifth word list presentation was measured.  

The SDMT required participants to mentally manipulate symbols and numbers in a limited time 

interval. The SDMT provides a measure of complex attention, combined with psychomotor speed, 

visuomotor coordination and working memory. A higher number of correct associations between 

numbers and symbols indicates an effective complex attention. The measured variable was the total 

number of correct responses in 90 s.  

Finally, BVMT-R was used to measure visuospatial learning and delayed memory. After each 

presentation of some simple visuospatial designs, participants had to reproduce as many of the designs 

as possible. The total number of scores after 3 consecutive representations was recorded.  

To avoid potential confound and ensure test-retest reliability, different versions of CVLT-II and 

BVMT-R were used on each occasion, while there are no known contradictions or limits to reusing the 

SDMT again after a 12-week time interval. 
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Appendix SIV: MSQOL-54 subscore results 

Table SII. Estimated mean MSQoL-54 subscale outcomes 

Outcome 

measures 

Group Baseline-adjusted means 

Mean (95% CI) 

Adjusted means at 

3-month follow-up

Mean (95% CI)

Mean differences between 

groups at 3-month follow-up 

Mean (95% CI) p-value

Physical health  Intervention 72.42 (35.87, 108.98) 84.95 (49.53, 120.37) –2.69 (–10.49, 5.10) 0.506 

 Control 70.79 (55.56, 86.03) 87.64 (52.09, 123.19) 

Health 

perceptions 

 Intervention 56.02 (35.81, 76.23) 53.07 (20.17, 85.97) –0.28 (–11.07, 10.51) 0.960 

 Control 54.90 (35.42, 74.39) 53.35 (39.36, 67.35) 

Energy  Intervention 56.19 (23.77, 88.62) 47.27 (19.66, 74.89) –10.95 (–20.84, –1.07) 0.040 

 Control 49.52 (36.01, 63.04) 58.23 (46.31, 70.14) 

Role limitations 

due to 

physical 

problems 

 Intervention 61.64 (10.10, 113.17) 61.37 (–27.62, 150.36) –6.04 (–39.32, 27.24) 0.725 

 Control 54.09 (10.15, 98.02) 67.41 (21.96, 112.85) 

Pain  Intervention 67.62 (22.24, 113.01) 80.07 (44.60, 115.55) 3.36 (–8.27, 14.98) 0.577 

 Control 69.88 (50.96, 88.79) 76.72 (61.63, 91.80) 

Sexual function  Intervention 78.20 (16.88, 139.51) 85.88 (71.19, 100.57) 1.27 (–7.88, 10.43) 0.788 

 Control 77.78 (52.22, 103.33) 84.61 (72.06, 97.15) 

Social function  Intervention 79.63 (61.84, 97.42) 76.80 (57.84, 95.76) –9.56 (–18.81, –0.32) 0.054 

 Control 76.63 (60.69, 92.57) 86.37 (73.05, 99.68) 

Health distress  Intervention 76.76 (52.39, 101.12) 84.57 (70.76, 98.39) 1.50 (–7.17, 10.17) 0.738 

 Control 81.67 (65.82, 97.53) 83.08 (71.02, 95.13) 

Overall quality 

of life 

 Intervention 70.45 (28.44, 112.46) 64.99 (29.03, 100.94) –7.80 (–19.26, 3.65) 0.194 

 Control 71.03 (53.52, 88.54) 72.79 (58.08, 87.50) 

Cognitive 

function 

 Intervention 86.34 (47.57, 125.12) 81.97 (71.53, 92.42) 3.31 (–2.77, 9.40) 0.296 

 Control 77.58 (61.42, 93.75) 78.66 (71.08, 86.24) 
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Emotional well-

being 

  

 Intervention 77.68 (53.18, 102.17) 66.66 (46.41, 86.92) –6.70 (–16.73, 3.34) 0.203 

 Control 75.37 (60.92, 89.82) 73.36 (60.19, 86.52) 
 

  

Role limitations 

due to emotional 

problems 

 Intervention 70.84 (10.85, 130.83) 82.70 (8.60, 156.81) 10.65 (–14.20, 35.49) 0.409 

 Control 95.80 (65.17, 126.43) 72.06 (42.23, 101.88) 
 

  

Satisfaction 

with sexual 

function 

 Intervention 58.40 (–9.61, 126.42) 73.45 (33.03, 113.87) 4.05 (–11.95, 20.05) 0.625 

 Control 73.74 (45.39, 102.09) 69.41 (48.33, 90.48) 
 

  

Change in health 

  

 Intervention 47.73 (–11.04, 106.51) 49.17 (1.06, 97.27) –5.24 (–22.59, 12.11) 0.559 

 Control 61.20 (36.70, 85.70) 54.41 (33.89, 74.92) 
 

  

95% CI: 95% confidence interval. 
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